Perturbation of dynamin II with an amphiphysin SH3 domain increases GLUT4 glucose transporters at the plasma membrane in 3T3-L1 adipocytes. Dynamin II participates in GLUT4 endocytosis.
نویسندگان
چکیده
The GLUT4 glucose transporter continuously recycles between the cell surface and an endosomal compartment in adipocytes. Insulin decreases the rate of GLUT4 endocytosis in addition to increasing its exocytosis. Endocytosis of the transporter is thought to occur at least in part via the clathrin-mediated endocytic system. The protein dynamin is involved in the final stages of clathrin-coated vesicle formation. Here we show that the dynamin II isoform is expressed in 3T3-L1 adipocytes and is present in isolated plasma membrane and low density microsomal fractions. Insulin reduced the levels of dynamin II associated with the plasma membrane by about half, raising the possibility that the hormone may reduce GLUT4 endocytosis by removing dynamin from the cell surface. A fusion protein containing the amphiphysin SH3 domain selectively bound dynamin II from 3T3-L1 adipocyte cell lysates. Microinjection of the fusion protein into these cells inhibited transferrin endocytosis and increased the levels of GLUT4 at the cell surface. Glutathione S-transferase alone, the SH3 domains of spectrin and Crk, and a mutated amphiphysin SH3 domain unable to bind dynamin II did not affect GLUT4 distribution. However, a peptide containing the dynamin II sequence that binds amphiphysin increased the surface presence of GLUT4. Moreover, in cells first treated with insulin to externalize GLUT4, the dynamin peptide, but not an unrelated control peptide, inhibited GLUT4 internalization upon insulin removal. These results suggest that interactions of dynamin II with amphiphysin may play an important role in GLUT4 endocytosis. We hypothesize that insulin may reduce GLUT4 endocytosis by regulating the function of dynamin II at the cell surface, as part of the mechanism to increase glucose uptake.
منابع مشابه
Dimethyl sulfoxide enhances GLUT4 translocation through a reduction in GLUT4 endocytosis in insulin-stimulated 3T3-L1 adipocytes.
Insulin increases muscle and fat cell glucose uptake by inducing the translocation of glucose transporter GLUT4 from intracellular compartments to the plasma membrane. Here, we have demonstrated that in 3T3-L1 adipocytes, DMSO at concentrations higher than 7.5% augmented cell surface GLUT4 levels in the absence and presence of insulin, but that at lower concentrations, DMSO only enhanced GLUT4 ...
متن کاملTargeting of GLUT6 (formerly GLUT9) and GLUT8 in rat adipose cells.
The subcellular targeting of the two recently cloned novel mammalian glucose transporters, GLUT6 [previously referred to as GLUT9 [Doege, Bocianski, Joost and Schürmann (2000) Biochem. J. 350, 771-776] and GLUT8, was analysed by expression of haemagglutinin (HA)-epitope-tagged GLUTs in transiently transfected primary rat adipose cells. Similar to HA-GLUT4, both transporters, HA-GLUT6 and HA-GLU...
متن کاملThe N terminus of amphiphysin II mediates dimerization and plasma membrane targeting.
Amphiphysin I and II are nerve terminal-enriched proteins containing SH3 domains that interact with dynamin and synaptojanin. The amphiphysins may function in synaptic vesicle endocytosis by targeting synaptojanin and dynamin to emerging endocytic buds through SH3 domain-independent interactions with clathrin and AP2. We have recently identified and cloned several amphiphysin II splice variants...
متن کاملInhibition of receptor-mediated endocytosis by the amphiphysin SH3 domain
BACKGROUND Receptor-mediated endocytosis appears to require the GTP-binding protein dynamin, but the process by which dynamin is recruited to clathrin-coated pits remains unclear. Dynamin contains several proline-rich clusters that bind to Src homology 3 (SH3) domains, which are short modules found in many signalling proteins and which mediate protein-protein interactions. Amphiphysin, a protei...
متن کاملActivation of cell surface glucose transporters measured by photoaffinity labeling of insulin-sensitive 3T3-L1 adipocytes.
Several studies have demonstrated that the intrinsic catalytic activity of cell surface glucose transporters is highly regulated in 3T3-L1 adipocytes expressing GLUT1 (erythrocyte/brain) and GLUT4 (adipocyte/skeletal muscle) glucose transporter isoforms. For example, inhibition of protein synthesis in these cells by anisomycin or cycloheximide leads to marked increases in hexose transport witho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 273 14 شماره
صفحات -
تاریخ انتشار 1998